Yr5 legacy methods
Protocols section
Home

Disease resistance. Stripe Rust Resistance.

Yr5

Background information

Stripe rust is one of the most aggressive diseases on common wheat (Triticum aestivum L. ) and durum wheat (T. turgidum L. var. durum) worldwide. In the United States, the western states are the most affected, although is becoming more important in the central US. Stripe rust is caused by the fungus Puccinia striiformis Westend. f. sp. tritici Eriks. (P. s. tritici).

The preferred way of controlling the disease is through the use of resistant varieties. There are several genes that can express resistance to this disease. However, changes in pathogen virulence can render them useless for breeding after some time.

Yr5 was described first in 1966 by Macer in Triticum spelta album (1). This gene confers resistance to all of the races known in the US (X. M. Chen, personal communication). Yr5 is located on chromosome arm 2BL, 21 cM away from the centromere (2). Kema transferred this gene into some commercial cultivars (3), and it remains effective to a broad range of PST isolates worldwide.

Marchal et al. (7) cloned Yr5 and showed that it is allelic to YrSP and paralogous to Yr7, both of which have been overcome by multiple PST isolates. The sequence analysis revealed that Yr5 belongs to a complex resistance gene cluster on chromosome 2B encoding nucleotide-binding and leucine-rich repeat proteins (NLRs) with a distinct N-terminal zinc-finger BED domain.

Markers for Yr5

The comparative analysis of the Yr5 and other non-resistant aleles showed that Yr5 has a 774 bp insertion 29 bp upstream of the STOP codon. Marchal et al. (7) designed PCR primers flanking that insertion and tested them on a germplasm set to confirm the usefulness of this marker for molecular breeding.

PCR primers:
Yr5_insertion_F 5'- CTC ACG CAT TTG ACC ATA TAC AAC T -3'
Yr5_insertion_R 5'- TAT TGC ATA ACA TGG CCT CCA GT -3'   
Amplification and expected products

The PCR amplification was conducted using a touchdown programme: 10 cycles, -0.5 C per cycle starting from 67 C and the remaining 25 cycles at 62 C.

Three different profiles were found: (1) a 1,281 bp product in Yr5 positive cultivars, (2) a 507 bp amplicon in the alternate Yr5 allele carriers, including AvocetS-YrSP, Cadenza, and Claire, and (3) no amplification:

Yr5 insert detection

Legacy markers for Yr5

Yan et al. found some RGAP (resistance gene analog polymorphism) markers completely linked to Yr5 (4). This type of markers are obtained by PCR amplification of sequences known to be homologous to conserved domains of genes coding for disease resistance (5). Usually, many products are obtained, and those that co-segregate with the trait in a mapping population can be used as markers. However, this type of markers are difficult to use and score, specially in a breeding environment, besides in some cases they are not polymorphic for the recurrent parent.

Later, Chen et al (6) converted two of the RGAP markers into more user friendly PCR markers. They developed two STS (sequence tagged site) and one CAPS (cleaved amplified polymorphic sequence) markers. These markers are polymorphic for a wider range of recurrent parents. The STS markers are analyzed in polyacrylamide gels, but they are easier to score than the original RGAPs, and the CAPS marker can be resolved in agarose gels. For experimental details see the legacy methods page.

Additional information.

Reaction to PST races of P. striiformis f. sp. tritici

PST races 17 20 27 29 37 43 45 59 78
Avocet S S S S S S S S S
Yr5 in an Avocet background R R R R R R R R R

Conditions presented here should be considered only as a starting point of the PCR optimization for individual laboratories.

References

1. The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. Macer, RCF. In: IJ. Mackey (ed.) Proc. of 2nd Int. Wheat Genet. Symp. Lund, Sweden 1963. Hereditas Suppl., 1966, 2:127-142.

2. Genetic control of yellow rust resistance in T. spelta album. Law CN. In: Plant Breeding Institute, Cambridge, Annual Report 1975, 1976, 108-109.

3. Resistance in spelt wheat to yellow rust I. Formal analysis and variation for gliadin patterns. Kema GHJ. In: Euphytica, 1992, 63:207-217.

4. Resistance gene analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust have homology with plant disease resistance genes. Yan GP, Chen XM, Line RF, Wellings CR. In: Theoretical and Applied Genetics, 2003, 106:636-643. DOI:10.1007/s00122-002-1109-8

5. Isolation of a superfamily of candidate disease resistance genes in soybean based on a conserved nucleotide-binding site. Yu YG, Buss GR, Maroof MA. In: Proc Natl Acad Sci USA, 1996, 93:11751-11756. DOI:10.1073/pnas.93.21.11751

6. Development of Sequence Tagged Site and Cleaved Amplified Polymorphic Sequence Markers for Wheat Stripe Rust Resistance Gene Yr5. Chen XM, Soria MA, Yan GP, Sun J, Dubcovsky J. In: Crop Science, 2003, 43:2058-2064. DOI:10.2135/cropsci2003.2058

7. BED-domain containing immune 1 receptors confer diverse resistance spectra to yellow rust. Marchal1 C, Zhang J, Zhang P, Fenwick P, Steuernagel1 B, Adamski1 NM, Boyd L, McIntosh R, Wulff BBH, Berry S, Lagudah E, Uauy C. In: bioRxiv, 2018, 299651. DOI: 10.1101/299651

Back to top